Memory in linear recurrent neural networks in continuous time

نویسندگان

  • Michiel Hermans
  • Benjamin Schrauwen
چکیده

Reservoir Computing is a novel technique which employs recurrent neural networks while circumventing difficult training algorithms. A very recent trend in Reservoir Computing is the use of real physical dynamical systems as implementation platforms, rather than the customary digital emulations. Physical systems operate in continuous time, creating a fundamental difference with the classic discrete time definitions of Reservoir Computing. The specific goal of this paper is to study the memory properties of such systems, where we will limit ourselves to linear dynamics. We develop an analytical model which allows the calculation of the memory function for continuous time linear dynamical systems, which can be considered as networks of linear leaky integrator neurons. We then use this model to research memory properties for different types of reservoir. We start with random connection matrices with a shifted eigenvalue spectrum, which perform very poorly. Next, we transform two specific reservoir types, which are known to give good performance in discrete time, to the continuous time domain. Reservoirs based on uniform spreading of connection matrix eigenvalues on the unit disk in discrete time give much better memory properties than reservoirs with random connection matrices, where reservoirs based on orthogonal connection matrices in discrete time are very robust against noise and their memory properties can be tuned. The overall results found in this work yield important insights into how to design networks for continuous time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

Application of artificial neural networks on drought prediction in Yazd (Central Iran)

In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...

متن کامل

Recurrent Neural Networks for Solving Linear Inequalities and Equations

This paper presents two types of recurrent neural networks, continuous-time and discrete-time ones, for solving linear inequality and equality systems. In addition to the basic continuous-time and discrete-time neural-network models, two improved discrete-time neural networks with faster convergence rate are proposed by use of scaling techniques. The proposed neural networks can solve a linear ...

متن کامل

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2010